Robust T–S Fuzzy-Neural Control of Uncertain Active Suspension Systems

Ming-Chang Chen, Wei-Yen Wang, Shun-Feng Su, and Yi-Hsing Chien

Abstract

This paper proposes a novel method for identification of a class of the uncertain active suspension systems by using on-line adaptive T-S fuzzy-neural controller. In reality, vehicles may encounter unpredictable road conditions, e.g., rocks and potholes influencing the dynamic behavior of active suspension systems. These road conditions are not only cause parts of the active suspension system to fail, but also turn them into uncertain systems. To solve this problem, this paper uses the mean value theorem to transform the active suspension system, which is nonlinear, into a virtual linear system. Furthermore, the proposed robust controller design is used to compensate the modeling errors and the external disturbances. Then the T-S fuzzy-neural network can identify the dynamic model of the uncertain active suspension systems. Finally, the results of simulation are illustrated that the proposed controller design presents good performances and effectiveness.

Keywords: uncertain active suspension systems, T-S fuzzy-neural model, and robust control.

1. Introduction

For active suspension systems, many control techniques [1-5] have been employed to improve the vehicle comfort and safety. These control techniques were assumed that the road was a smooth and consistent, and the dynamic behavior of an active suspension system never changed. However, vehicles are not always running on a smooth road; there may encounter unpredictable road conditions, e.g., rocks and potholes or the road may be otherwise uneven. In the real world, the active suspension system does not maintain static all the time, and some parts of the active suspension system may even fail from time to time. Note that if some parts of the active suspension system fail, the system would become an uncertain system. For solve this problem, a novel control technology is proposed for approximate an uncertain system.

The above problems for the uncertain systems have been addressed in [6-18]. Moreover, theoretical justification development presented in [9, 19-20] was valid only for SISO nonlinear systems, so it is hard to be implemented in real applications such as a tracking control problem of the active suspension system. Although Hwang and Hu [21] have proposed a robust neural learning controller design for MIMO systems, the state feedback control scheme did not always hold in practical applications, because models of these systems were seldom known. The objective of this paper is to propose a novel method using an on-line adaptive T-S fuzzy-neural modeling to approach the uncertain active suspension system.

First, we use the mean value theorem to transform the nonlinear active suspension system into a virtual linear system, following which an on-line identification algorithm and a robust tracking controller design are developed for the uncertain active suspension system. The results of simulation are reduces the tracking error of the closed-loop system to an arbitrarily small value, no matter what the states are made arbitrarily small value under various situations.

The remainder of the paper is organized as follows. In Section 2, we introduce the model of an active suspension system and the concept of the T-S fuzzy-neural modeling. Section 3 gives the details of the active suspension system and simulation results. Finally, Section 4 states the conclusions.

2. Active suspension system using on-line adaptive T-S fuzzy neural modeling

Consider the active suspension system with single input and multiple outputs are shown in Fig. 1. The dynamics behavior of the active suspension system can be written as follows:

\[m\ddot{z} = -K_s(z - z_s) - C_s(z - \dot{z}_s) + u' \]

\[m_s\ddot{z}_s = K_s(z - z_s) + C_s(z - \dot{z}_s) - u' - K_s(z - z_s) - C_s(z - \dot{z}_s) \]

and the normal force \(F_z \) can be described as,

\[F_z = m_g - K_s(z - z_s) - C_s(z - \dot{z}_s) \]

\[m = m_s - m \]

Corresponding Author: Wei-Yen Wang is with the Department of Applied Electronics Technology, National Taiwan Normal University, 160, He-ping East Rd., Section 1, Taipei, Taiwan.
E-mail: wywang@ntnu.edu.tw
Manuscript received 19 May 2010; revised 6 Oct. 2010; accepted 27 Dec. 2010.

© 2010 TFSA
where \(z_s \) and \(z_u \) are the displacements of the car body and wheel, respectively. \(z_r \) is the road disturbance. \(K_a \) is the active suspension spring coefficient, \(C_a \) is the active suspension damping coefficient, \(C_t \) is the tire damping coefficient, and \(K_t \) is the tire spring coefficient. \(m_s \) and \(m_w \) are the masses of car body and wheel, respectively. \(g \) is the acceleration of gravity, and \(u^* \) is the control force from the hydraulic actuator.

![Fig. 1. Quarter-vehicle active suspension system.](image)

From (1), we define the state variables \(x^*_1 = z_s \), \(x^*_2 = \dot{z}_s \), \(x^*_3 = z_u \), and \(x^*_4 = \dot{z}_u \). \(u^* \) is the control input. The active suspension system can be modeled as:

\[
\begin{align*}
\dot{x}^*_1 &= x^*_2 \\
\dot{x}^*_2 &= -\frac{K_a(x^*_3 - x^*_1) - C_a(x^*_1 - x^*_2) + u^*}{m_s} \\
\dot{x}^*_3 &= x^*_4 \\
\dot{x}^*_4 &= \frac{K_a(x^*_3 - x^*_1) + C_a(x^*_1 - x^*_2) - K_t(x^*_3 - z^*_r) - C_t(x^*_1 - \dot{z}_r)}{m_w} - \frac{u^*}{m_w}
\end{align*}
\]

(4)

Now, we consider two cases:

In case 1, we define \(F_{11}^* \) and \(F_{12}^* \) in a normal condition

\[
F_{11}^* = -\frac{K_a(x^*_3 - x^*_1) - C_a(x^*_1 - x^*_2) + u^*}{m_s}
\]

and

\[
F_{12}^* = \frac{K_a(x^*_3 - x^*_1) + C_a(x^*_1 - x^*_2) - K_t(x^*_3 - z^*_r) - C_t(x^*_1 - \dot{z}_r)}{m_w} - \frac{u^*}{m_w}
\]

In case 2, we define a worst condition, the parameters \(F_{21}^* \) and \(F_{22}^* \) are defined as

\[
F_{21}^* = -\frac{K_a(x^*_3 - x^*_1) - \overline{C}_a(x^*_1 - x^*_2) + u^*}{m_s}
\]

and

\[
F_{22}^* = \frac{K_a(x^*_3 - x^*_1) + \overline{C}_a(x^*_1 - x^*_2) - \overline{K}_t(x^*_3 - z^*_r) - \overline{C}_t(x^*_1 - \dot{z}_r)}{m_w} - \frac{u^*}{m_w}
\]

where the coefficients \(\overline{C}_a \), \(\overline{C}_t \), \(\overline{K}_a \), and \(\overline{K}_t \) have extreme values (those coefficients are multiplied by an arbitrary constant).

Let the state vector be \(x^* = [x^*_1, x^*_2, x^*_3, x^*_4]^T \) so that the output vector of generalized coordinates becomes \(y^* = [y^*_1, y^*_2, y^*_3, y^*_4]^T = [x^*_1, x^*_2, x^*_3, x^*_4]^T \). Then (4) can be rewritten as

Case g:

\[
\begin{align*}
\dot{x}^*_1 &= x^*_2 \\
\dot{x}^*_2 &= F_{g1}^*(x^*) + G_1(u^*) \\
\dot{x}^*_3 &= x^*_4 \\
\dot{x}^*_4 &= F_{g2}^*(x^*) + G_2(u^*)
\end{align*}
\]

and the outputs are

\[
\begin{align*}
y^*_1 &= x^*_1 \\
y^*_2 &= x^*_2 \\
y^*_3 &= x^*_3 \\
y^*_4 &= x^*_4
\end{align*}
\]

where \(g = 1 \) and \(g = 2 \) are for case 1 and case 2, respectively.

Definition 1: The mean value theorem [22] that is the most important theoretical tools in Calculus shows the illustration in Figure 2. Suppose a function \(f^* \) is continuous on the closed interval \([\overline{x}^*, x^*] \) and differentiable over the interval’s interior \((\overline{x}^*, x^*) \), where \(\overline{x}^* = t_1 x^* \), for \(0 < t_1 < 1 \). Then for some \(x^* \) between \((\overline{x}^*, x^*) \), we have \(f^*'(x^*) = (f^*(x) - f^*(\overline{x}^*))/(x^* - \overline{x}^*) \). Here \(\overline{x}^* \) is defined as a critical point, and \(x^* \) is the differential mean point of \(f^* \) on \((\overline{x}^*, x^*) \).

![Fig.2. Illustration of the mean value theorem.](image)

A. T-S FUZZY NEURAL MODEL

By definition 1, there are points \(x^*_i^* \) \((i = 1, 2, 3, 4) \) on the linear segments joining \(x^*_i \) to \(\overline{x}^*_i \) \((i = 1, 2, 3, 4) \). Thus, system (5) can be derived as follows:
where $\mathbf{x}' = [x'_1, x'_2, x'_3, x'_4]^T = t_i \mathbf{x}' (0 < t_i < 1)$ is a vector of critical points, $\mathbf{x}' = [x'_1, x'_2, x'_3, x'_4]^T = \mathbf{x}' - \mathbf{x}'_i$. $F_i' (\mathbf{x}')$ ($i = 1, 2, 3, 4$) is an unknown function, $u'_i = \partial F_i' (\mathbf{x}') / \partial x'_j (\mathbf{x}')$, ($i = 1, 2, 3, 4$, $j = 1, 2, 3, 4$, $k = 1, 2$, $g = 1, 2$) and

$$d'_j = [F'_1 (\mathbf{x}'_i), F'_2 (\mathbf{x}'_i), F'_3 (\mathbf{x}'_i), F'_4 (\mathbf{x}'_i)]' = [d'_{1j}, d'_{2j}, d'_{3j}, d'_{4j}]'.$$

The T-S fuzzy-neural model defined in [23] is R^{O_1}: If $x'_i = F'_i$ and...$z'_j = F'_j$ then

$$\mathbf{y}' = p'_i z'_i + p'_{i2} z'_2 + ... + p'_{i5} z'_5$$

where $\mathbf{z}' = [z'_1, z'_2, z'_3, z'_4]_T \in R^5$ is an input vector of the fuzzy-neural model, \mathbf{y}' is the output of the model, $F'_j (j = 1, 2, 3, 4, 5)$ are fuzzy sets, p'_i ($i = 1, 2, \ldots, h$, $l = 1, 2, 3, 4, k = 1, 2, 3, 4$, $g = 1, 2$) are adjustable parameters, and $[p'_{i1}, p'_{i2}, p'_{i3}, p'_{i4}] = [0, 1/m_i, 0, 1/m_i$] is a given vector. According to center of gravity defuzzifier, the output p'_{i} of the fuzzy-neural network is

$$p'_i = \sum_{i=1}^{h} \frac{\sum_{j=1}^{5} p'_{i}(\mu_{F'_j}(z'_i))}{\sum_{j=1}^{5} \sum_{i=1}^{h} \mu_{F'_j}(z'_i))}$$

(8)

where $\mu_{F'_j}(z'_i)$ is the value of the membership function.

For the tuning of the weighting factors p'_{i}, we define

$$w'_i = \frac{\sum_{i=1}^{h} \mu_{F'_j}(z'_i))}{\sum_{j=1}^{5} \sum_{i=1}^{h} \mu_{F'_j}(z'_i))}$$

(9)

Assumption 1: The antecedent part of the fuzzy implication describes the conditions of the state deviations and input deviations $[x'_i, u'_i]'$. The consequent part of the fuzzy implication represents the virtual linear system (VLS) model in (6).

For the purpose of approximating the system in (6), the ith fuzzy implication can be described as, R^{O_2}: If x'_i is F'_i and...u'_i is F'_i then

$$[\hat{x}'_1, \hat{x}'_2, \hat{x}'_3, \hat{x}'_4]' = \mathbf{A}' x'_i + \mathbf{B}' u'_i$$

(10)

where

$$\mathbf{A}' = \begin{bmatrix}
\alpha_{11} & \alpha_{12} & \alpha_{13} & \alpha_{14} \\
\alpha_{21} & \alpha_{22} & \alpha_{23} & \alpha_{24} \\
\alpha_{31} & \alpha_{32} & \alpha_{33} & \alpha_{34} \\
\alpha_{41} & \alpha_{42} & \alpha_{43} & \alpha_{44}
\end{bmatrix} + \begin{bmatrix}
0 \\
0 \\
0 \\
1/m_i
\end{bmatrix} F'_i (\mathbf{x}')$$

$$\mathbf{B}' = \begin{bmatrix}
0 \\
0 \\
0 \\
1/m_i
\end{bmatrix}$$

After applying (8), (9), and some commonly used defuzzification strategies, (6) can be derived as,

$$[\hat{\chi}'_1, \hat{\chi}'_2, \hat{\chi}'_3, \hat{\chi}'_4]' + d'_j + d'_j = \sum_{i=1}^{h} w'_i \mathbf{A}' x'_i + \mathbf{B}' u'_i + d'_j + d'_j$$

(12)

where $\mathbf{d}'_j = (\mathbf{A}' - \sum_{i=1}^{h} w'_i \mathbf{A}'_i)x'_i$, and p'_j ($i = 1, 2, 3, 4, j = 1, 2, 3, 4$) is used to approximate α_{ij} ($i = 1, 2, 3, 4, j = 1, 2, 3, 4$) of the system in (6).

B. CONTROLLER DESIGN FOR ON-LINE MODELING AND ROBUST TRACKING

To design a robust controller for (5) or (12), the following assumptions are required.

Assumption 2: Let \mathbf{x}'_i belongs to the compact sets \mathbf{U}_x and \mathbf{U}_u, respectively, where

$$\mathbf{U}_x = \{x'_i \in R^4 \mid \|x'_i\| \leq m'_x, \|u'_i\| \leq m'_u, \| \}$$

where m'_x and m'_u are design parameters. We define $\phi'_j = [p'_{j1}, p'_{j2}, \ldots, p'_{j5}]$, $l = 1, 2, 3, 4$ and $j = 1, 2, 3, 4$ is a given vector. It is known that the optimal adjustable parameters ϕ'_j lie in some convex regions

$$\mathbf{M}_q = \{\phi'_j \in R^4 \mid \|\phi'_j\| \leq m'_q, l = 1, 2, 3, 4, j = 1, 2, 3, 4\}$$

where the radii m'_q are constants and

$$\phi'_j = \arg \min_{\mathbf{q}'_j \in \mathbf{M}_q} \| \mathbf{p}'_j (\mathbf{x}'_i) - \mathbf{p}'_j (\mathbf{x}'_i) \|$$. $l = 1, 2, 3, 4, j = 1, 2, 3, 4$.

According to assumption 2, we define the optimal adjustable matrices for case g ($g = 1$ or $g = 2$) as

$$\dot{\mathbf{A}}'_g = \begin{bmatrix}
p''_{11} & p''_{12} & p''_{13} & p''_{14} \\
p''_{21} & p''_{22} & p''_{23} & p''_{24} \\
p''_{31} & p''_{32} & p''_{33} & p''_{34} \\
p''_{41} & p''_{42} & p''_{43} & p''_{44}
\end{bmatrix}.$$ (13)

Lemma 1 [24]: Suppose that a matrix $\mathbf{A} \in R^{4 \times 4}$ is given. For every symmetric positive definite matrix $\mathbf{Q} \in R^{4 \times 4}$, the Lyapunov matrix equation $\dot{\mathbf{A}}' \Gamma + \Gamma \mathbf{A} = -\mathbf{Q}'$ has a unique solution for $\Gamma = \Gamma'> 0$ if and only if
Define a coefficient matrix
\[\Lambda = \begin{bmatrix} -\lambda_1 & 0 & 0 & 0 \\ 0 & -\lambda_2 & 0 & 0 \\ 0 & 0 & -\lambda_3 & 0 \\ 0 & 0 & 0 & -\lambda_4 \end{bmatrix} \] (14)
where the coefficients, \(\lambda_1, \lambda_2, \lambda_3, \lambda_4 \), are selected such that the matrix \(\Lambda \) is a Hurwitz matrix. From the error dynamic equation \(\dot{e} = \Lambda e \), we could define \(\omega = [\omega_1 \omega_2 \omega_3 \omega_4]^T = \dot{r} + \Lambda e = \dot{x}^* \). Since there are external disturbances \(d_j^* \) in the system (6) and considering the design of the controller, we redefine \(\omega = \dot{r} + \Phi e \), where \(\Phi \) is an error compensator designed to compensate for \(d_j^* \). From equation (6), based on the certainty equivalence approach, a control input can be chosen as,
\[u^* = [B^*_T B^*]^T (\dot{x}^* - A^* x_j^* - d_j^*). \] (15)
Since \(d_j^* \) is unknown, we redesign \(u^* \) as follows:
\[u^* = [B^*_T B^*]^T (-A^* x_j^* + \omega - u_j^*). \] (16)
Then, the error dynamic equation can be derived as \(\dot{e} = \dot{x}^* - \dot{r} = \Phi e - u_j^* + d_j^* \).
Because the right side of (6) is unknown, we replace \(A^* \) by \(\sum w_i \hat{A}^*_i \) in (12). From (16) a fuzzy-neural control input can be derived as,
\[u^* = [B^*_T B^*]^T (-\sum w_i \hat{A}^*_i x_j^* + \dot{r} + \Phi e - u_j^*). \] (17)
Using assumption 2 and substituting (17) for (12), the error dynamic equation of the VLS model becomes,
\[\dot{e}^* = \hat{x}^* - \hat{r}^* = \dot{x}^* - \dot{r}^*
= \dot{x}^* + d_j^* + d_j^* - \dot{r}^*
= \sum w_i \hat{A}^*_i x_j^* + B^* u_j^* + d_j^* + (A^* - \sum w_i \hat{A}^*_i) x_j^*
+ \sum w_i (\hat{A}^*_i - \hat{A}^*_i) x_j^* - \dot{r}^*
= \sum w_i \hat{A}^*_i x_j^* + B^* u_j^* + d_j^* + A^* x_j^* - \sum w_i \hat{A}^*_i x_j^*
+ \sum w_i \hat{A}^*_i x_j^* - \sum w_i \hat{A}^*_i x_j^* - \dot{r}^* \]
we have
\[
\dot{\mathbf{v}} = -\frac{1}{2}e^T Q e' + e^T \Gamma \sum_{i=1}^{L} \sum_{l=1}^{P(t)} w_i \mathbf{A}_l \mathbf{x}'_l + \frac{1}{\eta} \sum_{i = 1}^{L} \left(A_i^T \dot{\mathbf{A}}_i \right)^T
\]
\[+ e^T \Gamma \dot{d} - e^T \Gamma \dot{u}'
\]
\[= \Delta + e^T \Gamma \dot{d} - e^T \Gamma \text{Diag} \{ \text{sign}(e'_i) \} k
\]

(25)

where
\[
\Delta = -\frac{1}{2}e^T Q e' + e^T \Gamma \sum_{i=1}^{L} \sum_{l=1}^{P(t)} w_i \mathbf{A}_l \mathbf{x}'_l + \frac{1}{\eta} \sum_{i = 1}^{L} \left(A_i^T \dot{\mathbf{A}}_i \right)^T
\]
\[= -\frac{1}{2}e^T Q e' + e^T \Gamma \left(\sum_{i=1}^{L} \sum_{l=1}^{P(t)} w_i \mathbf{A}_l \mathbf{x}'_l - \frac{1}{2} \mathbf{A}_4^T \dot{\mathbf{A}}_4 \right)
\]

(26)

If we select \(\dot{\mathbf{A}}_4 \) as (21), (25) becomes
\[
\dot{\mathbf{v}} \leq -\frac{1}{2}e^T Q e' + k \sum_{j=1}^{L} k_j |e'_{ij}|
\]

(27)

Choose the value of \(k_j (j = 1, 2, 3, 4) \), such that
\[\sum_{j=1}^{L} k_j |e'_{ij}| > k \]

then
\[
\dot{\mathbf{v}} = -\frac{1}{2}e^T Q e' \leq 0
\]

(28)

Equations (22) and (28) only guarantee that \(e'(t) \in L_{\infty} \), but not that it converges. The boundedness of \(e'(t) \) implies the boundedness of \(x'(t) \). Since the operating state are finite, \(x_i' \) is bound. Based on Assumption 2 and the boundedness of \(x_i' \), \(u' \) is bounded. Therefore, \(\dot{e}'(t) \) is bounded, i.e. \(\dot{e}'(t) \in L_{\infty} \).

Integrating both sides of (28) yields
\[\nu(t) - \nu(0) \leq -\frac{1}{2} \lambda_{\text{min}}(Q) \int_0^t \dot{e}'(t) \| e'(t) \| dt
\]

(29)

where \(\lambda_{\text{min}}(Q') > 0 \) is the minimum eigenvalue of \(Q' \).

When \(t \) tends to infinity, (29) becomes
\[\int_0^t \| e'(t) \| dt \leq \frac{\nu(0) - \nu(\infty)}{2} \lambda_{\text{min}}(Q')
\]

(30)

Since the right side of (30) is bound, \(e'(t) \in L_{\infty} \).

Therefore, by using Lemma 2, \(\| e'(t) \| \rightarrow 0 \) as \(t \rightarrow \infty \).

This completes the proof.

The design algorithm and on-line tuning algorithm is summarized as follows

1) Select the coefficients \(\lambda_1, \lambda_2, \lambda_3, \) and \(\lambda_4 \) such that the matrix \(\mathbf{A} \) is a Hurwitz matrix.

2) Choose an appropriate vector \(\mathbf{k} \) in (19). In order to remedy the chattering of control inputs, (19) can be modified as
\[
\mathbf{u}'_{ij} = \begin{cases}
 k_j, & \text{if } e'_{ij} \geq 0 \text{ and } |e'_{ij}| > \gamma_j \\
 -k_j, & \text{if } e'_{ij} < 0 \text{ and } |e'_{ij}| > \gamma_j \\
 k_e_{ij}, & \text{if } |e'_{ij}| < \gamma_j \\
 \gamma_j, & \text{if } e'_{ij} \geq 0 \text{ and } |e'_{ij}| \leq \gamma_j \\
\end{cases}
\]

3) Construct fuzzy sets for \(\mathbf{x}_i' \) and \(\mathbf{u}'_i \).

4) Obtain the control law (17) and the update law (21).

Fig. 3 shows the overall scheme of the T-S fuzzy-neural controller proposed in this paper. It is an on-line identification algorithm using T-S fuzzy–neural modeling and a robust tracking controller for the uncertain active suspension system.

3. Simulation Results

The aim of the active suspension system is to improve the comfortableness and safety of passengers in the vehicle, that is, to maintain both the displacement \(z_\nu \) of the vehicle body and the displacement \(z_\nu \) of the vehicle wheel to track the optimum balance point which is defined to be zero. In this section, the results of simulation using the proposed controller are shown that the tracking errors can be made arbitrarily small values, and on top that, the results of experimental are also confirmed that the tracking errors of displacement can be attenuated efficiently.

Reports of this type of research have apparently not been published which rough roads may not only cause some parts of the active suspension system to fail, but also turn them into uncertain system. Therefore, we have

\[\mathbf{\xi}_{\nu} = \mathbf{F}(\mathbf{x}'_{\nu}) + \mathbf{G}(\mathbf{u}')\]

\[\mathbf{\xi}_{\nu} = \mathbf{F}_\nu(\mathbf{x}'_{\nu}) + \mathbf{G}_\nu(\mathbf{u}')\]

Obtain the control law (17) and the update law (21).
$y_j^\prime (j = 1, \ldots, 4)$ of the closed-loop system to track the reference signals $r_j^\prime (j = 1, \ldots, 4)$. The fuzzy sets over the interval $[-10\,000, 10\,000]$ are defined for $x_j^\prime = [x_{j1}^\prime, x_{j2}^\prime, x_{j3}^\prime, x_{j4}^\prime]^T$ with the term sets (PB, PS, Z, NS, NB). The design parameters are selected as $\eta = 0.001, \lambda_i = 2 (i = 1, 2, 3, 4)$, and $Q = [20\ 0\ 0\ 0; 0\ 20\ 0; 0\ 0\ 20; 0\ 0\ 0\ 20]$.

Table 1. List of symbols and parameters.

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Descriptions</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_g</td>
<td>The total mass of the car</td>
<td>440.0 kg</td>
</tr>
<tr>
<td>m_s</td>
<td>The mass of the car body</td>
<td>400.0 kg</td>
</tr>
<tr>
<td>m_w</td>
<td>The mass of the car wheel</td>
<td>40.0 kg</td>
</tr>
<tr>
<td>C_a</td>
<td>The active suspension damping coefficient</td>
<td>1050.0 N/m</td>
</tr>
<tr>
<td>C_t</td>
<td>The tire damping coefficient</td>
<td>1500 N/m</td>
</tr>
<tr>
<td>K_t</td>
<td>The tire spring coefficient</td>
<td>175500 N/m</td>
</tr>
<tr>
<td>K_a</td>
<td>The active suspension spring coefficient</td>
<td>19960.0 N/m</td>
</tr>
</tbody>
</table>

In the following example, a vehicle is driving on smooth road. Figure 4 shows the displacement (z_s) of the vehicle body. We can control the displacement of the vehicle body to track the optimum balance point which is defined to be zero. The active suspension system encounters rough road conditions after 10s. An instant later the tire spring K_t and the active suspension spring K_a are broken by a rough road (the spring coefficients are multiplied by 50, i.e., $K_t = 50K_t$ and $K_a = 50K_a$). Furthermore, the dynamic model of the active suspension system is changed from case 1 ($g = 1$) to case 2 ($g = 2$) in (5). Based on the system variation, the T-S fuzzy-neural model must re-learn and re-approximate the new states of the active suspension system. And the simulation results are shown that our proposed control scheme is still effective under the uncertain system, we magnify Fig. 4 around the 10s region; this is clearly that the actual trajectory x_1^\prime (red line) can quickly track the desired trajectory r_1^\prime (blue line). The experimental results are confirmed that the tracking performance is good, even when some parts of the active suspension system fail. Fig. 6 (a) shows the normal force F_z. From (5), we know that the value of the normal force F_z stays fixed when z_s and z_u approach zero. If the values of the normal force would not stay fixed, the vehicle would lose its balance. In order to explicitly show that the value of the normal force F_z can stay fixed, we magnify Fig. 6 (a) around the 18s region. We noticed that value of the normal force can stay fixed. Fig. 6 (b) shows the value of the normal force F_z for a nonlinear backstepping control method [1] under the same conditions. Before 10s, z_s and z_u are controlled to approach zero and the value of the normal force F_z stays fixed. After 10s, the normal force F_z is shown in Fig. 6(c). The value of the normal force F_z that is very large and the instant maximum or minimum is around $\pm 10^5$. From 18s to 20s, the value of the normal force F_z cannot stay fixed. It is quite obvious that the nonlinear backstepping controller cannot handle the fault well. Fig. 7 (a) shows the control signal of the active suspension system using the proposed controller. Fig. 7(b) shows the control signal of the nonlinear backstepping controller [1]. The maximum force is limited to be 3000 N. The control signal of the nonlinear backstepping controller is larger than ours. Moreover, after 10s, the control signal of the nonlinear backstepping controller method has serious chattering. From Figs. 4–7, we are confirmed that the proposed controller can handle the fault well.
Fig. 5. z_o, the displacement of vehicle body.

Fig. 6. (a) curves of normal force F_z.

Fig. 6. (b) curves of normal force F_z by using [1].

Fig. 6. (c) curves of normal force F_z by using [1].

Fig. 7. (a) the control input signal of the active suspension system.

Fig. 7. (b) the control input signal of the active suspension system by using [1].
4. Conclusions

In this paper, a novel on-line adaptive T-S fuzzy-neural modeling has been proposed for uncertain active suspension system that can be transformed into a virtual linearized system model through the mean value theorem. Furthermore, the robust controller was used to compensate the modeling errors and the external disturbances. The results of simulation using proposed controller are shown that the displacement tracking performance is good and effectiveness, even when the springs of active suspension system are broken. Finally, it should been re-emphasized that the on-line adaptive T-S fuzzy-neural controller proposed in this paper can achieve a better control performance than the conventional methods.

Acknowledgment

This work was supported by the National Science Council, Taiwan, under Grant NSC 99-2221-E-003-022.

References

[18] Y.-G. Leu, T.-T. Lee, and W.-Y. Wang,
M.-C. Chen et al.: Robust T–S Fuzzy-Neural Control of Uncertain Active Suspension Systems

Ming-Chang Chen was born in Taipei, Taiwan, R.O.C., in 1981. He received the M.S. degree in electrical engineering from National Taiwan University, Taiwan, R.O.C. in 2006. He is currently working toward the Ph.D. degree at National Taiwan University of Science and Technology, Taipei, Taiwan. His research interests include fuzzy logic systems, adaptive control, and intelligent control.

Shun-Feng Su received the B.S. degree in electrical engineering, in 1983, from National Taiwan University, Taiwan, R.O.C., and the M.S. and Ph.D. degrees in electrical engineering, in 1989 and 1991, respectively, from Purdue University, West Lafayette, IN.

He is now a Chair Professor of the Department of Electrical Engineering, National Taiwan University of Science and Technology, Taiwan, R.O.C. He is an IEEE Fellow and an IET Fellow. He has published more than 150 refereed journal and conference papers in the areas of robotics, intelligent control, fuzzy systems, neural networks, and non-derivative optimization. His current research interests include computational intelligence, machine learning, virtual reality simulation, intelligent transportation systems, smart home, robotics, and intelligent control.

Dr. Su is very active in various international/domestic professional societies. He is now the president of the Taiwan Fuzzy Systems Association and is in the Boards of Governors of the Chinese Automatic Control Society, the Taiwan Society of Robotics, and the Taiwan Association of System Science and Engineering. Dr. Su also acted as Program Chair, Program Co-Chair, or PC members for various international and domestic conferences. Dr. Su currently serves as Associate editors of IEEE Transactions on Systems, Man, Cybernetics, Part B, and International Journal of Fuzzy Systems. He is also the Editor-in-Chief of the Far East Journal of Experimental and Theoretical Artificial Intelligence.

Wei-Yen Wang (M’00-SM’04) received the M.S. and Ph.D. degrees in electrical engineering from National Taiwan University of Science and Technology, Taipei, Taiwan, in 1990 and 1994, respectively.

From 1990 to 2006, he worked concurrently as a patent screening member of the National Intellectual Property Office, Ministry of Economic Affairs, Taiwan. In 1994, he was appointed as Associate Professor in the Department of Electronic Engineering, St. John’s and St. Mary’s Institute of Technology, Taiwan. From 1998 to 2000, he worked in the Department of Business Mathematics, Soochow University, Taiwan. From 2000 to 2004, he was with the Department of Electronic Engineering, Fu-Jen Catholic University, Taiwan. In 2004, he became a Full Professor of the Department of Electronic Engineering, Fu-Jen Catholic University. In 2006, he was a Professor and Director of the Computer Center, National Taipei University of Technology, Taiwan. Currently, he is a Professor with the Department of Applied Electronics Technology, National Taiwan Normal University, Taiwan. His current research interests and publications are in the areas of fuzzy logic control, robust adaptive control, neural networks, computer-aided design, digital control, and CCD camera based sensors. He has authored or coauthored over 100 refereed conference and journal papers in the above areas.

Yi-Hsing Chien was born in Taipei, Taiwan, R.O.C., in 1978. He received the M.S. degree in electrical engineering form National Taiwan University, Taiwan, R.O.C. in 2007. He is currently pursuing a Ph.D. degree in electrical engineering from National Taipei University of Technology. His research interests include fuzzy logic systems, adaptive control, and intelligent control.